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Abstract: In this paper most of the classes of G-structures with Einstein induced metric
of negative, null, or positive scalar curvature are realized. This is carried out by means
of warped Gj-structures with fiber an Einstein SU(3) manifold. The torsion forms of
any warped Gp-structure are explicitly described in terms of the torsion forms of the
SU(3)-structure and the warping function, which allows to give characterizations of
the principal classes of Einstein warped G; manifolds. Similar results are obtained for
Einstein warped Spin(7) manifolds with fiber a G, manifold.

Introduction

The relation between geometric structures (such as almost Hermitian or Gj-structures,
among others) and Einstein metrics has been deeply studied by many different authors. In
particular, one of the most important problems related with this issue is the longstanding
conjecture due to Goldberg [26]:

“A compact almost Kdhler Einstein manifold is Kdhler”.

Partial affirmative answers have been obtained under some additional curvature con-
ditions. For instance, in [42] Sekigawa proved that assuming non-negative scalar cur-
vature the conjecture is true. However, the general case is still open. Concerning the
non-compact version of this conjecture, Apostolov, Draghici and Moroianu found a
counterexample which is described in [2]. This example consists on a non-compact
solvmanifold (solvable Lie group) endowed with a left-invariant almost Kihler struc-
ture whose induced metric is Einstein. As the almost complex structure is not integrable,
the almost Kéhler structure is not Kéhler.

A Gj-structure on a 7-dimensional manifold M consists of a reduction of the structure
group of its frame bundle to the Lie group G,. Equivalently, such structure can be
characterized by the existence of a global non-degenerate 3-form ¢ on M. Any G-
structure has an induced Riemannian metric g,. When d¢ = 0 the manifold (M, ¢) is
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called closed G, manifold, and if in addition the 3-form ¢ is coclosed then it is necessarily
parallel with respect to the Levi-Civita connection of g, [20]. Parallel G, manifolds are
Ricci flat and have holonomy in G;. Gibbons, Page and Pope described a G;-analogue
of the Goldberg conjecture in [27] where they studied supersymmetric string solutions
on closed Gy-manifolds. This analogue can be stated as follows:

“A compact Einstein closed G, manifold is parallel”.

In [13] Cleyton and Ivanov answer positively to this question. For the non-compact
version, several authors have given partial affirmative answers under some additional
conditions. For example, in [9] it is shown that every Einstein closed G manifold with
non-negative scalar curvature is parallel. In [15] the authors proved that Einstein closed
G;-manifolds which are also *-Einstein are, in fact, parallel. In [19] it is shown that in
contrast to the almost Kéhler case, a seven-dimensional solvmanifold cannot admit any
left-invariant closed Gj-structure such that its induced metric is Einstein, unless it is
parallel.

Up to this point, a question that naturally arises is the following: which classes of G»-
structures can induce an Einstein metric? Our goal in this paper is to show that one can
realize most of the classes of Gj-structures with Einstein induced metric of negative, null
or positive scalar curvature (see Table 5 and Theorem 5.2). We also study the analogous
problem for Spin(7) manifolds (see Table 6 and Theorem 7.7). For the construction of
such structures, we will consider Einstein warped G, resp. Spin(7), manifolds with fiber
an Einstein SU(3), resp. G> manifold. Next we explain in more detail the contents of
the paper.

In Sect. 1 we recall some well known results about SU(3)-structures (w, ¥4) on a
6-dimensional manifold L, such as the description of the scalar curvature of the induced
metric g4, y, and the principal classes of SU(3)-structures in terms of their torsion forms
[4,16]. Section 2 is devoted to general results about G;-structures ¢ on a 7-dimensional
manifold M following [9, 16]. We also recall the sixteen Ferndndez-Gray G;-classes P,
X, i ®X;, X, @X; @ X and X = &) © &> ® A3 ® A4, as well as their description
in terms of the torsion forms 7, 71, 72, T3 of the G;-structure. In Sect. 3, a class of G-
structures on warped products M = I x L with fiber an SU(3) manifold L is considered,
which provides a natural extension of the well-known usual, exponential and sine cones
(see Proposition 3.1). Different constructions of G-structures based on warped products
or cones have been studied by many authors (see for instance [1,3,5-7,15,21,22] and
the references therein). We obtain in Theorem 3.4 an explicit description of the torsion
forms of the warped Gj-structure in terms of the torsion forms of the SU(3)-structure
and the warping function f.

Our goal in Sect. 4 is to construct Einstein 7-manifolds in the different G,-classes
by means of warped products of certain Einstein SU(3) manifolds. In this way explicit
Einstein examples with scalar curvatures of different signs are obtained. In Sect. 4.1 we
focus on the principal classes of G, manifolds, giving characterizations for the existence
of a parallel, nearly parallel or Einstein locally conformal parallel warped G,-structure in
terms of the SU(3) geometry of the fiber. Such G,-structures correspond to the classes
P, X1 and A}, respectively. For the Gy-class Xy @ A3 it is proved that if a warped
G, manifold M is Einstein then it is parallel (see Proposition 4.6), in particular the
Gj-analogue of the Goldberg conjecture holds for warped G, manifolds, as closed G;
manifolds constitute the class X>.

In Sect. 4.2 we obtain Einstein coclosed Gj-structures, i.e. in the class X & A3,
on warped products of SU(3) manifolds of type W, @ W, @ W3, and apply the con-
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struction to the manifold S3 x §3 endowed with one of the SU(3)-structures found in
[41]. In Sect. 4.3 we construct Einstein G, manifolds in different classes starting with
a 6-manifold endowed with a coupled structure. Coupled SU(3)-structures were first
introduced in [40] and have torsion class W,” @ W, , so they are half-flat and generalize
the nearly Kahler structures. The twistor space Z over a self-dual Einstein 4-manifold
has an Einstein coupled SU(3)-structure [43], which is used in [22] to construct a Ricci-
flat locally conformal closed G, manifold, i.e. in the class &> @ X (see [23] for Einstein
solvmanifolds in this class with negative scalar curvature). In Theorems 4.14, 4.17 and
4.18we construct Einstein G manifolds of negative, null and positive scalar curvature
in the classes Xo @ Xy, X1 B X @ A3, X1 © A3 b Ay and X D A3 @ Xy. An Einstein
6-solvmanifold S, of negative scalar curvature, is considered in Sect. 4.4 to obtain an
Einstein G, manifold on the hyperbolic cosine cone over S.

Motivated by the classification problem studied in [12], in Sect. 5 we realize most
of the Gj-classes in the Einstein setting with scalar curvature of different signs (see
Theorem 5.2). More concretely, in the Ricci flat case and in the case of positive scalar
curvature, there exist Einstein warped Gj-structures of every admissible strict type,
except possibly for X1 @ &> @ X4. On the other hand, there are Einstein warped G-
structures with negative scalar curvature of every admissible strict type, except for &>,
X3, X> @ A3, and possibly for X1 @ X> @ X4. Table 5 shows concrete Einstein examples,
when they exist, in the different G;-classes together with information on the SU(3)
geometry of the fibers. At the end of Sect. 5, explicit families of Einstein G-structures
with identical Riemannian metric but having different G, type are given (see [1,9,28,
34,36] for related results).

Section 6 is devoted to warped Spin(7) manifolds (N = Iy x M, ¢) with fiber
a G manifold (M, ¢). In Theorem 6.3 we describe the torsion forms Ay, A5 of the
Spin(7)-structure ¢ in terms of the torsion forms of the fiber, which allows to give
characterizations for the existence of a parallel or an Einstein locally conformal parallel
warped Spin(7)-structure in terms of the G, geometry of the fiber. In Sect. 7 Einstein
8-manifolds in the different Spin(7)-classes, i.e. P, Vi, V> and the general class Y =
V1@, are constructed. For zero or positive scalar curvatures, there are Einstein warped
Spin(7)-structures of every admissible strict type, whereas for negative scalar curvature
there are Einstein warped Spin(7)-structures of every admissible strict type, except for
) (see Theorem 7.7 and Table 6).

1. SU(3)-Structures

An SU(3)-structure on a 6-dimensional manifold L consists of a triple (g, J, ¥) such
that g is a Riemannian metric, J is an almost complex structure compatible with the
metric, and W is a complex volume form satisfying

3. —_ 3
- IVAV =w,
4

where w is the fundamental form associated to the almost Hermitian structure (g, J).
Note that an SU(3)-structure on a 6-dimensional manifold L can be described by the
pair (w, ¥4), where v, is the real part of the complex volume form W. Indeed, ¥,
determines the almost complex structure J, and the imaginary part y_ of the form W
satisfies . = J, (see [29]). We will denote by g, y, the Riemannian metric induced
by the SU(3)-structure.

As it is described in [4], the intrinsic torsion of an SU(3)-structure can be given in
terms of the derivatives of the forms w, ¥, and _. Consider the natural action of the
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group SU(3) on the spaces Q27 (L) of differential p-forms on L, and more concretely, the
SU(3) irreducible subspaces of Q2 (L)and Q3 (L). One has the following decompositions
[4,16]:

QX (L) = Qi (L) ® (L) & Q3(L).

where 5

QL) ={fwl| feC®WL),

QUL) = {x6J (@ AYy) | € QUL = {B € Q*(L) | JB = —B),

QL) ={Be QL) | BAY: =0, %6JB = —B A}

= {BeQ*L)|JB =4, BAraw®=0}
and
QL) = Q7 (L) ® Q] (L) ® (L) & Q,(L)

with

Q} (L) ={f v | feC®WL),
QL) ={ero|aecQ (L)} ={y e QL) |*Jy =7}
QL) ={y e LWL [y Awo=0, y Ayrx =0}

Here, x4 denotes the Hodge star operator, and Q,f (L) is the SU(3) irreducible space of p-
forms of dimension k at every point. The decomposition on the other degrees is obtained
via the isomorphism described by the Hodge star operator g, i.€. *g Qf (L) = Qz_p (L).

Thus, the differentials of @, ¥4 and ¥_ can be decomposed into summands belonging
to the SU(3) invariant spaces as follows:

3 3
dw=—500¢++§7t01p_+v1/\a)+V3,
_ 2 (L
dyy =y + T A Yy — T2 A,

dy_ :aoa)2+m AY_ —or Aw,

where 0¢, 79 € C°(L), 1, v; € QYUL), m2, 00 € Q%(L) and v3 € Q?Z(L) are called
the forsion forms. Note that in the last equality, w1 A Y- = Jm; Ay accordingly to [4].

Bedulli and Vezzoni derived the Ricci tensor of the metric g, y, induced by the
SU(3)-structure in terms of the torsion forms. In [4, Theorem 3.4], they find the following
expression for the scalar curvature:

15 15 1
Scal(gp.y,) = 7713 + 7002 +2d%6m; + 2d0v; — |vp|* — 5|oz|2

——1| | ——1| | ( ) (2)
7|2 v2+4n,v . 2
2 2 ) 3 1, VI

Here, d*¢ denotes the codifferential, i.e. the adjoint of the exterior derivative with respect
to the metric.
As it is described in [16] the torsion of an SU(3)-structure, namely 7, lies in the
space
T e WE@WS @Ws @ Ws @ Ws,

where W, are the irreducible components under the action of the group SU(3). The
spaces W are related to the torsion forms by Table 1.
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Table 1. Principal classes of SU(3)-structures

Class Non-zero torsion form
{0} -

wf 0

W1+ o0

W3 Ly

W, 02

W3 V3

Wy V]

Ws s\

Hence, torsion forms provide a useful tool to describe the principal classes of SU(3)-
structures. For instance, SU(3)-structures with zero torsion are called integrable, or
Calabi-Yau, their holonomy is contained in SU(3) and they are Ricci flat. The SU(3)-
structures in the class W,  are nearly Kéhler. They are Einstein and all the torsion
forms vanish except for . There are only finitely many homogeneous nearly Kahler
manifolds [11] and new complete inhomogeneous examples on S¢ and 3 x §3 are
found recently in [24]. Other well known SU(3)-structures are the half-flat structures,
for which g = m; = v; = m, = 0, and the nearly half-flat structures, characterized by
w1 = v = op = 0. Half-flat structures were first considered in [30] (see also [16]) and
the class of nearly half-flat structures was introduced in [21], and these structures can
be evolved to a parallel and to a nearly parallel G,-structure, respectively.

In this paper the SU(3)-structures in the classes W} @ W, @ W3 and W, @ W,
will play a role in the construction of Einstein G, manifolds (see Sects. 4.2 and 4.3).
The structures in the first class are characterized by 71 = vi = mp = o» = 0, and the
structures in the second class are known as coupled SU(3)-structures. Coupled SU(3)-
structures were first introduced in [40] (see also [22]) and they are characterized by the
condition dw = — %ao Y4, where oy is constant, which is equivalent to the vanishing of
all the torsion forms except og and o». Thus, coupled structures are half-flat and they
generalize the nearly Kihler structures.

We end this section recalling some well-known identities concerning SU (3)-structures
that will be useful in the next sections.

Lemma 1.1. Consider an SU(3)-structure (v, ¥+, ¥_) on a 6-manifold L. Then, for
any 1-form © € QY (L) the following identities hold:

e k(T AW AW =>x%6(T AY3) Ay = %6(TAY_)AY_ =2%6T,
e x(TAY)AY. = —x TAVY ) APy =—T Ao’

Proof. Let fel, ..., 66} be abasis adapted to the SU (3)-structure, i.e. a local orthonormal
basis such that the forms w, 1} and ¥_ have the following expressions

=24 e g, = 135 46 _ 236 _ 245

Vo = 6136+el45 +6235 _ 6246.

Here we denote by ¢/, resp. e'/%, the wedge product e’ A e/, resp. ¢/ A e/ A ek. Now,
a generic 1-form on L can be written locally as T = ZZ: (aie', witha; € C*°(L), and

the result follows by a direct calculation. O
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2. G,-Structures

A Gy-structure on a 7-dimensional manifold M consists of a reduction of the structure
group of its frame bundle to the Lie group G». Equivalently, the existence of such
structure can be characterized by the existence of a global non-degenerate 3-form ¢ on
M which can be locally written as

¢ = 6127 +e347 +6567 +el35 _ 6146 _ 6236 —6245, (3)
where {e!, ..., e’} is a local basis of 1-forms on M. The presence of a G,-structure ¢
on a manifold defines a volume form vol7 and a Riemannian metric g, which satisfy

1
8o (X, Y)vol7 = GO NN,

for every X, Y vector fields on M.

Let (M, ¢) be a G, manifold. Then, the group G; acts on the space 2”(M) of
differential p-forms on the manifold M. This action is irreducible on ' (M) and Q°(M),
but it is reducible for 7 (M) with 2 < p < 5. Since the Hodge star operator %7 induces
an isomorphism between the spaces of p-forms and (7 — p)-forms on M, we only need
to describe the decompositions for p = 2 and 3. In [9] it is shown that the G, irreducible
decompositions for p = 2 and 3 are

QX (M) = Q3 (M) & Q1,(M),
where
QM) = {#7(a A x79) | @ € Q1 (M),
QLM) = {Be QM) | BAp=—x7B)={B€Q(M)|BA9=0)

and
QM) = Q3 (M) & BM) @ 23,(M),

with
QM) = (fo | f eC®M)),
QM) = (x7(a A @) | @ € Q1 (M)},
QM) ={y e (M) |y Ag =0, y Ax79 =0},

where Q,f (M) denotes a G irreducible space of p-forms of dimension & at every point.
Note that the description on the other degrees are obtained via the isomorphism described
by the Hodge star operator, i.e. 7 Q,f M) = Qz_p (M).

As it is pointed out in [9], it is useful to recognize the scaling factors that the isomor-
phisms between these G» irreducible spaces introduce. For example, for any k € Q' (M)
one has

*7 (*7 (kK AN@) A (p) = —4, @
*7 (*7 (K A x790) A *7(p) = 3«k.

The G, type decomposition of forms on M allows to express the exterior derivative

of ¢ and *7¢ as follows

dp =10 %70 +3 71 A @+ %713,

)
dx79 =471 Ax70+ T2 A @,
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Table 2. Principal classes of G;-structures

Class Torsion forms Structure

P n=11=n=13=0 Parallel

X1 1=1=13=0 Nearly parallel

Xy n=11=13=0 Closed

X3 n=t11=17=0 Coclosed of pure type

Xy n=1=13=0 Locally conformal parallel
X D X3 11=1=0 Coclosed

where 70 € C¥ (M), 71 € QL (M), 12 € SZﬂ(M) and 73 € 5237(M) are called the torsion
forms of the G,-structure.

According to [20], the covariant derivative of ¢ can be decomposed into four ir-
reducible components, namely X1, X2, X3 and X4. Thus, a Gy-structure is said to be
of type P, &;, X; @ X}, &; @ X; @ &) or X if the covariant derivative V&g lies in
{0}, Xi, Xi®X;, X ®X;®Xror X = XD Xo® X3® Xy, respectively. Hence, there
exist 16 different classes of G;-structures. These classes can be described in terms of the
behavior of the torsion forms 7, 71, 72, 73 [16]. In Table 2 the principal Ferndndez-Gray
classes of Gp-structures are given.

Hence, torsion forms constitute a useful tool to describe different G-structures.
Moreover, as it was shown by Bryant in [9], one can also describe the scalar curvature
of a G, manifold in terms of its torsion forms by

21 1 1
Scal(gy) = 12d*7t; + n 0 +30 7> — 3 IT2)? — 5 7312, (6)

where d*7 is the codifferential with respect to the metric g, on M.

The geometry of G;-structures in the different classes above has been studied by many
authors. Parallel G, manifolds have holonomy in G; and they are Ricci-flat. Examples
of manifolds with G, holonomy are constructed in [8,10,32]. On the other hand, any
(strict) nearly parallel G, manifold is Einstein with positive scalar curvature [25]. The
classification of G, manifolds, initiated in [20], was completed in [12] both in the non-
compact and compact cases. In Sect. 5 we realize most of the G-classes in the Einstein
setting with scalar curvature of different signs.

3. Warped G;-Structures

In this section we consider a class of Gy-structures on warped products with fiber an
SU(3) manifold, and we obtain an explicit description of the torsion forms of the warped
G»-structure in terms of the torsion forms of the SU(3)-structure.

The presence of an SU(3)-structure on a 6-dimensional manifold provides a way
to obtain 7-dimensional manifolds endowed with Gy-structures. Indeed, consider L a
6-dimensional manifold endowed with an SU(3)-structure (w, ¥, ¥_). Let M be the
Riemannian product M = R x L, and denote by

p: M — R, q: M — L,
the projections. Then, the 3-form
¢ =g (@) A p*(dh) +q"(Y),

where 7 is the coordinate on R, defines a G,-structure on M. In the following, we will
identify w, ¥4 and ¥ _ with their pullbacks onto M.
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We will consider a slightly more general class of G»-structures given by the warped
product construction. Let (B, gp) and (F, gr) be two Riemannian manifolds, and let
f be a nowhere vanishing smooth function on B. In this paper we suppose that f is
never a constant function. Denote by p and ¢ the projections of B x F onto B and
F, respectively. Recall that the warped product, namely M = B x s F, is the product
manifold B x F endowed with the metric g given by

g = f2q"(gr) + p*(gn).

The manifold B is called the base of M, F the fiber, and the warped product is called
trivial if f is a constant function.

In what follows, we consider /' = L and a 1-dimensional base B. More concretely,
B = Iy C R is an open interval where the function f(¢) does not vanish. In the next
result we introduce the class of G;-structures that will be studied.

Proposition 3.1. Let (L, w, Yy, ¥—) be an SU(3) manifold and consider functions
fra,B: 1y — R, with a%(t) + B2(t) = 1. Then, the form on M = Iy x L given
by

9= Ao Adt+ () ()P — BOY-) (7

defines a family of Ga-structures whose induced metric is
8o = [2(0) gu,y, +d1”.

Proof. Consider {e!, ..., ¢®} alocal orthonormal basis of 1-forms for which the SU(3)-
structure has its canonical expression. Then, with respect to the basis

(', Ry ={fmel, L fet, F)(a@)e’ —B1)e), f1) (B +a(t)e), di}

the 3-form ¢ can be written as in (3), and therefore {hl, e, h7} is a local orthonormal
basis for the metric g,. Thus,

7 6

8= h@h =) e +dt@dt = f>(t) gu.y, +dt’.
i=1 i=1

O

It is worthy to remark that in the previous proposition we have enlarged the set of
Ga-structures ¢, inducing the same metric g4, by using functions «(¢) and () due to
the phase freedom for the (3,0)-form of the SU(3)-structure. This will allow us to obtain
Einstein metrics that could not be found with o and S constant.

According to Proposition 3.1, if (L, w, ¥4, ¥_) is an SU(3) manifold, then the G,
manifold M = Iy x L with ¢ described in (7) is precisely the warped product manifold
M = Iy xy L. In what follows, any such G-structure ¢ will be called warped G-
structure, and we will refer to the pair (M = Iy x L, ¢) as a warped G, manifold.
Notice that the warped G»-structure generalizes the well-known ideas of cone and sine-
cone that appear in the literature.

Next we will obtain an explicit description of the torsion forms of the warped G-
structure on M = Iy x L in terms of the torsion forms of the SU(3)-structure on L, the
warping function f, and the functions «, 8. For the sake of simplicity, in the next results
we will not write the 7-dependence of the functions f, o and .

The following lemma will be useful to relate the Hodge star operators *g and 7
induced by the SU(3) and G; structures, respectively.
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Lemma 3.2. Let y € QP(L) be a differential p-form on L, and let x¢ and *7 be the
Hodge star operators induced by the structures (v, ¥y, ) and @, respectively. Then,

w7y =[O wgy Adt,  w1(y Adt) = (—1)P O gy

Proof. Ttis animmediate consequence of the definition of the Hodge star operator and the
fact that *¢ and *7 are determined, respectively, by (g4, y, , vols = %a)S) and (g, voly),

with vol; = fOvolg Adt. O

Proposition 3.3. Let ¢ be a warped G-structure on M = Iy x L. Then,

dg = —f2<%ao +3f o+ fo' )iy Adi+ fz(%no +3f'B+ fB )b At
+ f3(a o — ﬂoo)a)2 + f2v1 AwAdt+ f2v3 Adt
A @y = BYo) = fPlam = por) Ao,
d*7 9= f3(2f/+,3710+otoo)a)2 Adt+ o A o?
+ P A(BYst+ay ) Adt — fP(Bma+ac) Ao Adt,
where we denote by g, 09, 71, V1, T2, 02 and v3 the torsion forms of the SU (3)-structure

(0, Y4, Y4) on L.

Proof. For dg, the result is a direct consequence of Eq. (1) and Proposition 3.1. On the
other hand, from Lemma 3.2 it follows that

*7¢0 = %f4wAw+f3(ﬁw++aw_)/\dt,

and the result for d %7 ¢ is obtained also as a direct consequence of (1) and
Proposition 3.1. O

Theorem 3.4. Let (L, w, ¥4, ¥—) be an SU(3) manifold with torsion forms my, o9, 71,
vy, w2, 02 and v3. Then, the torsion forms of a warped G, manifold (M = Iy x L, ¢)
are given by

4 , /
0 = ﬁ(3n0a—300ﬂ+f05,3 —f,BO(),

1
T = ﬁ(n0ﬂ+aoa+2f/)dt+%+%,

2 2 1 2
7;2:—5*6(V1Aa) )Adt+§>!<6(7'r1/\w ) Adt

1 1
—gfﬂ *6(771 A Iﬂ+) — gf(:( *6(771 A\ lﬁ,)

2 2
+§f/3 *6 (V1 A Yy) + gfa x6(VI AY-) — fBm2 — faon,

3 3
ry =12 (moa? —ovap = 2/B ) vu+ — £ (moap — oo B2+ 2 ) -

2 1 1
+;f(rr0a—00,8—2fa,3’+2fﬁa’)a)/\dt—5*6(v1/\w)+§*6(m/\a))
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+§f0! *6 (M1 A Yp) Adt — %fﬂ *6 (T AY_) ANdt — %fa *6 (V1 A Yy Adt

+%fﬂ k6 (VI AV_)Adi+ flam — Bor) Adt — f2 #6v3.

Proof. From (5) it can be easily obtained that
IO=%*7(d<p/\<p), T = —x7d %7 0 +4x7(71 A %70),
T1=—15x7(7d @ A@), T3 =7de — 109 —3%7(T1 A Q).

Let us detail the computations for 7g. By Proposition 3.3 we have

do A = [— f2<§ao+3f/a+fa’)w+ /\dt+f2<%7to+3f/ﬁ+f,3’>w_ Adt
+f3(7t0a—oo,3)w2+f2v1 /\a)/\dt+f21J3 Adt
i A @y =By = flam—por) Ao
A[fza)/\dt+f3(omp+—,81p_)]
_fS(TL’ _ 3 5<§ / /
= S(roa — 00 B’ Adt +af 2n0+3fﬂ+fﬂ)1p+/\w_/\dt
—,st(%oo+3f’a+fa/>w+A v Adt
— e — 3 5 2, 2 N 3
= oo —ogB)w’ Adt+ f (noa+3foc/3 oo B 3fﬁa)a) Adt
5 2, 0 2.0 3
=f (27roa—200,3+§fa,3 —gf,Bot)a) Adt.
Therefore, using Lemma 3.2 we get
1 4
0 =5%(dgng) = ﬁ(3ma—3aoﬁ+faﬁ/—fﬁa’).

Similarly, the results for 71, 70 and 73 follow as a long but standard computation
taking into account Proposition 3.3 and Lemmas 1.1 and 3.2. O

An immediate consequence of the previous theorem is the following
Corollary 3.5. The torsion forms of a warped G-structure satisfy:
19=0 < {i) 3moa—300B+ fap’ — fBa’ =0;
ii) ooa+myB+2f =0,

11=0 ¢ ..
iii) m = —vyi;
iv) m =2v,
n=0 v) Pm+aoy =0;
vi) moa—ooB —2fap +2fBa’ =0,
vii) m = vy,
B=0S2 0 i) s — Bz = 0,
ix) v3=0.
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Proof. The result is obvious for 19, 77 and 72 in view of Theorem 3.4. For 13, the
vanishing of the first three summands (see Theorem 3.4) is equivalent to vi). Indeed,

moa’ —ogaf —2fB = a(noa — oo —2faﬁ/+2ff3a’)

and

moap — oo f2+2fa = B(moa— a0 p—2fap +2 ).

where we are using the fact that ea’ = —Bp’, which follows from the identity o + 82 =
1. The other conditions vii), viii) and ix) are clear from Theorem 3.4. O

4. Einstein Warped G, Manifolds

Our goal in this section is to construct Einstein 7-manifolds in the different G,-classes
by means of warped products of certain Einstein SU(3) manifolds. The G-structures
are of the form (7), i.e. what we called warped Gy-structures. In this way we will
obtain explicit Einstein examples with scalar curvature of different signs. In Sect. 4.1
we study the principal classes of G, manifolds, Sect. 4.2 is devoted to coclosed G-
structures, in Sect. 4.3 warped products of coupled SU(3)-structures are considered,
and in Sect. 4.4 we obtain Gy structures on the hyperbolic cosine cone of Einstein
solvmanifolds.

Let us consider the warped product M = B x ¢ F, i.e. the product manifold B x F
endowed with the metric g givenby g = f2¢*(gr)+p*(gp), with p and ¢ the projections
of B x F onto B and F, respectively, and f a nowhere vanishing smooth function on
B. We denote by Ric® the lift to M (i.e. the pullback by p) of the Ricci curvature of
B, similarly for Ric”, and let Hess(f) be the lift to M of the Hessian of f. By [38, p.
211] the warped product M = B x ¢ F is Einstein with constant A (i.e. Ric = 1 g) if
and only if (F, gr) is Einstein with constant u (i.e. Ric’ = u gr) and the following
conditions are satisfied:

ng:RicB—;Hess(f), A K—A—f—(d—l)'VTf

T2y

2

8B

whered =dim F > 2, Af =tr (Hess(f)), and V f denotes the gradient of f.
Moreover, when the base space B has dimension 1, these equations reduce to

A "
"2 2
+=ff=—. 8
e (8)
The behavior of the solutions of (8) depends on the signs of the Einstein constants A
and p. Nevertheless, up to homotheties, those solutions (besides the constant case) are
given in Table 3 (see also [5]).

Table 3. Solutions of the equation (8)
m —(d-1) 0 d—1 d—1 d—1
A —d —d —d 0 d
1@ cosht et sinh ¢ t sint
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From this table the next result follows

Theorem 4.1 [5, Theorem 9.110]. Let M = B x s I be a warped product, withdim B =
landdim F = d > 1. If M is a complete Einstein manifold, then either M is a Ricci-flat
Riemannian product, or B = R, F is Einstein with non-positive scalar curvature and
M has negative scalar curvature.

We consider B = Iy C R an open interval where the function f(¢) does not vanish.
For the functions in Table 3 we will take generically /; = R for f(r) = cosht or ¢,
Iy = (0, 00) for f(t) =sinhtort,and Iy = (0, ) for f(¢) = sint. In the latter case,
if F is compact then g = dt? + sin”t ¢*(gr) defines a metric on the product manifold
[0, ] x F with two conical singularities at ¢+ = 0 and ¢ = 7 (see for instance [6,21]).

In order to use directly Table 3, we will consider the Einstein metric on the fiber F'
to be “normalized”, that is, its Einstein constant is

—d-1), 0, or d-1,
where d denotes the dimension of F, or equivalently, the scalar curvature is
—dd-1), 0, or d(d-1),

respectively. There is no loss of generality in assuming this condition since every Einstein
metric can be normalized via a rescaling. Similar considerations are applied to Einstein
metrics on the total space M of the warped product.

4.1. Principal classes of G manifolds. In this section we focus on Einstein 7-manifolds
in the principal classes of G, manifolds, i.e. in the classes P, X7, A>, X3 and X4. Whereas
one can construct Einstein manifolds in the classes P, &X] and X4 by means of warped
Gj-structures, however we will prove in Proposition 4.6 that such a manifold in the class
Xy @ A3 is necessarily parallel.

Next, several characterizations will be given for the classes P, X7 and Xs. We begin
with parallel G manifolds.

Proposition 4.2. There exists a parallel warped G;-structure on M = Iy x L if and only
if the fiber (L, w, Y4, ¥_) belongs to W} @ W, and is Einstein with Scal (g,y,) = 30.
Furthermore, in that case M = (0, 00) x L is the t-cone with the Gy-structure

2 3(_9%0 o
o=rtondi+1 ( T+ 2‘”‘)’ )

where oy, o are the (constant) torsion functions of the SU(3)-structure, which satisfy
2

Ty + ag =4,
Proof. Let us suppose that the SU(3) manifold (L, w, ¥4, ¥_) belongs to Wi @ W,
and is Einstein with constant 5. Hence, the torsion reduces to g and o9, and the Eq. (1)
are given by

dw = —500 (/2 70 Y-, dyy=myw-, dy_=ogw".
These equations imply that the wedge product of the 1-forms drg, dog by w? is zero,
S0 7o, oy are constant. Moreover, from (2) we get 30 = Scal(gw,y,) = E(th + crg),
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which implies ng +a§ = 4. Now, the warped Gy-structure with f(t) =t, o = —% and
B = —% satisfies the equations i)—ix) in Corollary 3.5, so it is parallel.

Conversely, let us suppose that there exists a warped Gj-structure that is parallel,
i.e. the equations i)—ix) in Corollary 3.5 are satisfied. From iii), iv) and ix) we have
that 71 = v; = v3 = 0, and from v) and viii) we get oo = m» = 0 because ozz(t) +
B%(t) = 1. Hence, the manifold (L, w, ¥, ¥_) belongs to the SU(3)-class Wrewr,
and by the first part of the proof we have that the torsion functions mg and op are
constant. Furthermore, by (6) any Gj-parallel structure is Ricci-flat, so from Table 3
we get that the warping function is necessarily f(#) = ¢ and the metric induced by
the SU(3)-structure is Einstein with constant & = 5. Notice that (2) implies Jrg + 002
=4.

Finally, it remains to see that the G,-structure on the ¢-cone is given by (9). Let us
write o (t) = cosO(t) and B(t) = sin6(¢), for some function 6(¢). The equations i) and
vi) for f(¢t) =t are equivalent to

moa(t) —oo f(1) =0,  6'(1) =0,

which implies that «(¢), B(¢) are constant functions. On the other hand, from the first
equation above and the equation ii) for f(t) = ¢, we arrive at the following system

7'[()05—00,320, (700{+JTO,3=—2.

Now, the condition 7§ + o = 4 clearly implies thata = —% and B = —72, and the
result follows. O

In the following proposition we consider warped G, manifolds in the class X7. The
result also gives another characterization of an SU(3) manifold in the class VV]Jr W,
in terms of a sin z-cone.

Proposition 4.3. There exists a nearly parallel warped Gy-structure on M = Iy x L
with Scal(gy) = 42 if and only if the fiber (L, w, Yy, Yy_) belongs to Wi & Wy and
is Einstein with Scal(gy,y,) = 30.

Furthermore, in that case M = (0, ) x L is the sin t-cone with the G-structure

@ =sin’twAdt+sin’ 1 (cos(et + p) Yy — sin(e 1+ p) Y_), (10)

where ¢ = 1 and p is given in terms of the (constant) torsion functions og, g of the
SU(3)-structure by og = —2 cos p and mg = —2 sin p.

Proof. Suppose that the SU(3) manifold belongs to W @ W, and is Einstein with
constant 5. Hence, the same argument as in the first part of the proof of Proposition 4.2
shows that 77, o are constant and ng +002 = 4. Now, the Ga-structure given by (10) sat-
isfies the equations ii)—ix) in Corollary 3.5. Thus, we get a nearly parallel G, manifold
with Einstein constant equal to 6.

Letus prove the converse. Suppose that there exists a warped productof (L, w, ¥4, ¥—)
given by (7) that is a nearly parallel G, manifold with Einstein constant 6, i.e. the
equations ii)—ix) in Corollary 3.5 are satisfied. The equations iii), iv) and ix) imply
w1 = vy = v3 = 0, and from v) and viii) we get oo = m» = 0 because oez(t)+/32(t) =1.
On the other hand, by Table 3 we get that the warping function is necessarily f(t) = sint
and the metric induced by the SU(3)-structure is Einstein with constant . = 5, which
implies, by (2), that 713 + ag = 4. Hence, the manifold (L, w, ¥4, ¥_) belongs to the
SU(3)-class Wf @ W, , and the (constant) torsion functions 7y, oy satisfy ng + 002 =4,
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It remains to prove that the warped product M must be necessarily the sin z-cone
given in (10). To see this, we consider the equations ii) and vi) for f(#) = sint in
Corollary 3.5. Writing «(¢) = cos 8(t) and () = sin6(¢), for some function 6(¢), we
get

opa(t) +mo B(t) = —2 cost, moa(t) — oo B(t) =26(t) sint.

Using ng+002 = 4, we have
(1) ! t+1 0'(t)sint B() ! t ! 0'(t)sint
= —— 0p COoS — T sin t, = —— 71 COSt — — O sint,
¢ 2 %0 2 0 2 0 2 %0
and from «?(r) + B%(¢t) = 1 it follows that
’ 2 .2
[(9 ) —l]sm t=0.

This implies 6'(t) = +1 and thus 6(t) = ¢t + p, where ¢ = +1 and p is a constant
which, as we show next, it is determined by o and . Indeed, the equations ii) and vi)
are now written as

(0p cos p + g sin p +2) cost + (g cos p — og sin p)sint = 0,

(719 cos p — op sin p) cost — g(og cos p + 1w sinp +2)sint = 0.
These equations imply
00 COS p + 7 Sin p = —2, op sinp — g cosp =0,

whose solution is 69 = —2 cos p and mg = —2 sin p. In conclusion, the G,-structure is
given by (10) and the proof is complete. O

Corollary 4.4. Let (L, w, Y4, Y_) be an SU(3) manifold in W{ @W; with Scal (g, y,) =
30. Then, the nearly parallel Gy-structure on M = Iy x L given by (10) has torsion
0 =4¢ (e = =£1).

Proof. Tt is a direct consequence of Proposition 4.3 and the expression of 7 in Theo-
rem 3.4, taking f(¢) = sint, a(r) = cos(et + p), B(t) = sin(et + p), cos p = —F and
sinp=-2. O

As a consequence of Propositions 4.2 and 4.3 we recover well-known characteriza-
tions of a nearly-Kihler manifold L given in [3,21] (see also [7]). Here, and in what
follows, we consider that the torsion of a nearly-Kihler manifold is g = —2, so the
Einstein constant equals 5.
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Corollary 4.5. Let (L, w, ¥+) be an SU(3) manifold. Then:

(1) L is nearly-Kdhler if and only if the (usual) cone with the G-structure
o=t>wAdi+1Y,,

is a parallel G manifold;
(1) L is nearly-Kdhler if and only if the sine-cone with the G-structure

Q= sin’t w A dt +sin3t(cost1/f+ —sinty_),
is a nearly parallel Gy manifold.

Proof. For (i), just take in (9) the values op = —2 and rp = 0. For (ii) we take ¢ = 1 in
(10)and p = 0, because —2 =09 = —2 cospand 0 =myp = —2 sinp. 0O

Recall that G, manifolds in the class X> @ X3 are characterized in terms of the torsion
forms by the conditions 79 = 71 = 0.

Proposition 4.6. A warped G, manifold M in the class X» @ X3 is Einstein if and only
if it is a parallel G manifold.

Proof. From Corollary 3.5, if the G,-structure belongs to the class X @ A then the
conditions 7), ii) and iii) are satisfied. In addition, an Einstein G, manifold with 7y =
71 = 0 has non-positive Einstein constant by (6). If such constant is zero then the G»-
structure is parallel. So, in what follows we suppose that the Einstein constant is negative,
which after scaling we consider to be —6, and so by Table 3 the possible functions are
f () = cosht, €', or sinh 7. Next we will prove that there is no solution in any of these
cases.

From o2 (¢) + ,32(t) = 1 we can write @ () = cos6(¢) and B(t) = sin6(z), for some
real-valued function 0 (). Thus, a(t) 8’ (t) — B(t)a’(r) = 6'(¢), and equations i) and ii)
in Corollary 3.5 become:

i) 3moa(t) =300 (1) +6'(t) f() =0,
ii) oga(t) +mo B(t) +2f'(t) = 0.

Multiplying i) by «(?), ii) by 36(¢), and summing the resulting equations, we get
370 = 3mo(a? (1) + B2(1) = —0' () a(®) f (1) = 6 B(1) f'(®).

Since g is a function on the fiber manifold L and the right hand side of the equation
only depends on ¢, necessarily there exists a constant C such that

0’ o) f(1)+6 (1) f(1) = Cr. 1)

Now, multiplying i) by —B(¢), ii) by 3a(t), and summing the resulting equations,
we get

300 = 300(@?(1) + B2(1)) = 0'(t) B(t) f(t) — 6a(r) £/ (D).
Hence, there exists a constant C» such that
0'(t) B(t) f(1) —6a(t) f'(1) = Ca. (12)

Taking the product of (12) by «(#), the product of (11) by B(¢), and subtracting the
equations, we get 6 /(1) = Cy B(t) — C, a(t). In a similar way, taking the product of
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(12) by B(t), the product of (11) by a(¢), and summing the equations, we get0’(r) f(t) =
C1a(t) + Cy B(¢t). That is, we arrive at the following system:

6 f'(t) = C1 B(1) — Cra(1), (13)

0'(1) f(t) = Cra(t) + C2 B(1). (14)

Taking the derivative of (14) and using (13) we get 0”(¢) f(¢) + 0'(t) f'(t) =
Ciad' (t)+Co /(1) = —0'(1)(C1 B(t) — Crax(t)) = —66'(2) f'(2), that is

0" (1) f(1)+76'(t) f'(z) = 0.

Notice that #’() = 0 implies that the functions «a(z) and B(¢) are constant, and then
equation i) cannot be solved for f(¢) = cosht, ', or sinh ¢. Therefore, 6'(t) # 0 and
we can write the previous equation as

(In6’(t) +7 In f(1)) = 0.
Hence, there exists a positive constant Cy such that

/(1) =Co f(1)™". (15)

On the other hand, taking the derivative of (13) and using (14) we get 6 f/(¢) =
Ci1B/(t) — Cra/ (1) = 0'(1)(Cra@) + C2 B(1) = (6'(1))* f (1), that is

6 ") = (0'0)* f (1)
Now, using (15), we have 6 f”(t) = Cg fH™13,ie.

FOB @ =cie,

which never holds for the functions () = cosh ¢, e’, or sinh ¢. In conclusion, the system
i)—iii) is never satisfied. 0O

Since the class X> @ A3 contains the class of closed and the class of coclosed of pure
type G2 manifolds, from Proposition 4.6 we get

Corollary 4.7. There does not exist any SU(3) manifold (L, w, V4, ¥_) for which the
warped Gy manifold M = Iy x L is Einstein closed or coclosed of pure type, unless it
is parallel.

Remark 4.8. As we recall in the introduction, it is an open question if an Einstein closed
G manifold must be parallel. Several authors have proved that this question has an
affirmative answer in different particular situations: for compact (and more generally,
for *x-Einstein) manifolds in [13,15], for non-negative scalar curvature in [9], and for
solvmanifolds with left invariant Gp-structure in [19]. The corollary above shows that
the answer is also affirmative in the class of warped G, manifolds.

Now, we turn our attention to Einstein locally conformal parallel G manifolds, i.e.
Einstein manifolds in the class Xj.

Proposition 4.9. There exists an Einstein locally conformal parallel warped G, -structure
on M = Iy x Lwith Scal(g,) = —42 if and only the fiber (L, @, Y+, ¥_) is one of the
following:
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e L is Calabi-Yau, and then M = R x L is the exponential-cone with Gj-structure
@ = e*w Adt + e, thus, the unique non-vanishing torsion form is t| = dt.

e L belongs to W} @ Wy with Scal(g4,y,) = 30, and then M = (0, 00) x L is the hy-
perbolic sine-cone with Gy-structure ¢ = sinh” t w Adt +sinh> ¢ (8%" Yy — 8% ,),
where ¢ = £1 and o, 7 are the (constant) torsion functions of the SU(3)-structure,

which satisfy rrg + og = 4. Thus, the non-vanishing torsion form of the warped G-

g+cosh dt

structure is exactly 1| = =51

Proof. Suppose there is such a warped product. Using that 79 = 0 = 73 = 0 and
Corollary 3.5, similarly to the proof of Proposition 4.2 we arrive at the fact that L
belongs to Wf @ W[, so the torsion reduces to oy, 7o. On the other hand, by Theorem
3.4 the unique non-vanishing torsion form of the warped G;-structure is

1

T = —

2f
If 00, o vanish then L is Calabi-Yau and the warped product is the exponential-cone. If
the torsion of L is non-zero then the scalar curvature of L is equal to 30 and f(¢) = sinhz.
The equations 7) and vi) in Corollary 3.5 give the solutions (¢, 8) = (8%, 8”70), where
& = =£1. Finally, the values of t; for both cases are obtained as a direct consequence of
(16). O

(0B + oo + 2 f)dt. (16)

Similarly to the previous proposition we have:
Proposition 4.10. Let (L, w, Y4, ¥—) be an SU(3) manifold. Then:

(i) There exists a Ricci flat locally conformal parallel warped G;-structure on M =
I ¢ x L ifand only if the fiber L belongs to W @ W, ", and then M = (0, 00) x L is
the cone with Gy-structure o = t> o Adt +13 (e R Y. — e Y_), where & = +1
and t) = %dr. In addition, M is parallel if and only if ¢ = —1.

(ii) There exists an Einstein locally conformal parallel warped G-structure on M =
Iy x L with Scal(g,) = 42 if and only if the fiber L belongs to W{ @ Wy, and
then M = (0, ) x L is the sint-cone with Gy-structure ¢ = sin®t w A dt +

-3 o T +cost
sin® 7 (65 Yy — &2 ), where ¢ = £1 and 11 = Z521dr.

4.2. Einstein coclosed G manifolds. In this section we construct Einstein coclosed G-
structures (i.e. of type X @ A3) on warped products of SU(3) manifolds in the class
W{ @W, @ Ws. We apply the construction to the manifold $3 x §3 endowed with one
of the SU(3)-structures described in [41].

Theorem 4.11. Let (L, w, ¥4, Y_) be an Einstein SU(3)-structure of type W @ W, &
Wi with Scal(gw,y,) = 30. Then, the torsion functions mo, oo are constant, and C =

\ /ng + 002 satisfies C > 2.
Moreover, let a = arccos(oy/C) and consider 9(t) as follows:

(1) if 0(¢) is the constant function 6 = a — arccos(—2/C), then the G,-structure
¢ = > w Adt +t3(cost9 Yy —siné w_)

on the manifold M = (0, 00) x L is coclosed and its induced metric is Ricci flat;
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(i1) if 0(¢t) = a — arccos(—2cost/C), then the Gy-structure
@ =sinrw A dt +sin3 t(cose(t) Wy — sin6(t) w,)

on the manifold M = (0, w) x L is coclosed and its induced metric is Einstein
with Scal(gy) = 42;
(iii) if C > 2 and 6(t) = a — arccos(—2cosht/C), then the Gy-structure

¢ = sinh® 7 w A dt + sinh® t(cos@(r) Wy — sin6(7) 1/;,)

on the manifold M = (O, In E+vC—4 VZCL“) x L is coclosed, and its induced metric is
Einstein with Scal(gy,) = —42.

Proof. Since the SU(3)-structure is of type W) @ W, @ W3, we have that the possibly
non-zero torsion reduces to 77, og and v3, that is, the Eq. (1) reduce to

3 3
dw=—§00¢++§7[01//,+v3, dw+=7'[()a)2, dyr_ =G()w2.
These equations imply dg A w?* = 0 and dog A w?* = 0, therefore the torsion functions
7y, 0( are constant.
On the other hand, from the expression (2) for the scalar curvature we get

15 1 15
30 = Scal(gy.y,) = 7(:1& +ad) — 5|v3|2 < 7@% +a3),

which implies C? = 78 + of > 4.

Moreover, from Corollary 3.5 the G,-structure given by (7) has torsion form 7, = 0.
Thus, it is coclosed if and only if 71 = 0 or, equivalently by Corollary 3.5, if and only
if the equation

oo a(t) +mo B(1) = =2 f'(1)

is satisfied. The scalar curvature of g, v, is positive, so f(#) must be ¢, sint or sinh z.

Let a = arccos(og/C), i.e. op = C cosa and mp = C sina. Writing o (t) = cos0(t)
and B(r) = sin 0(z), the equation above becomes o () + 79 B(¢t) = C cos(a—0(t)) =
—2f'(t), that is,

0(t) = a — arccos(—2f(t)/C).

For f(t) = t or sint, we have that | — 2f'(r)/C| < 1 for any ¢, because C > 2.
However, for f(f) = sinh¢, since cosht > 1 we need to impose that C > 2 in order to
get an open interval of values of ¢ satisfying | — 2 cosh#/C| < 1. Indeed, such interval
is (In &= V2Cz_4, In C+V2CZ_4) when C > 2. From this discussion, the cases (i), (ii) and
(iii) follow directly. O

Example 4.12. We will apply Theorem 4.11 to an Einstein SU(3)-structure on §3 x §3
in the class W,” @ W; found in [41]. Here we will follow the description given in [37,
Section 3.4].

Let us consider the sphere S, viewed as the Lie group SU(2), with the basis of left
invariant 1-forms {el, e, e3} satisfying

de' = 623, de* = —e13, and de’ = e'2.
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Hence, the Lie algebra of 3 x 83 is g = su(2) & su(2), and its structure equations are
g= (e23, _el3, o2, f23, —f13, f12)’

where { f'} denotes the basis of 1-forms on the second sphere. Now, we consider the
basis {h!, ..., h®} of the dual space g* of g given by

1_£1 | 2_£_1 1y 3 V10 5
h—10(€+f),h—10(€+f),h—106,
4_ V10 5 s V10 5 6 VIO 4
nt= 2 s = D3 s = X

10 10 10

With respect to this basis, the structure equations of the Lie algebra g of S° x § turn
into

g= (N/g(h35+h46),\/§(—h35+h46),\/§(—h15+h25),
V3(=h'S — 120 /313 — p23), V51 +h24)) _

We define the SU(3)-structure (o, ¥4, ¥_) on §3 x §3 by
w = 112+ 134 4 56 Wy = h135 _ 146 _ 236 _ 245
W = B30 4 p145 4 235 _ p246
Then, an easy calculation shows that the Eq. (1) are
dw = —300 Vs + 13,
dyry =0,
dy_ =opw A w,

where o9 = —+/5 and the torsion form v3 is given by

\/§h135+ £h146 _ ‘/_ghzae _ ﬁh245 + 525 4 5 26,

BT 2 2 2

Therefore, the SU(3)-structure (o, ¥4, ¥_) on S3 x S belongs to the class W, &Ws.

Moreover, the induced metric g, y, on S° x S3 is given by g, y, = 2?21 hi @ h', and
its Ricci curvature tensor satisfies

Ric(gw,%-) =5 8w, Yy -

Thus, gu,y, is an Einstein metric on S* x $3 with Scal(ge,y,) = 30.

We can apply Theorem 4.11 to get Einstein coclosed G, manifolds with different
25
5

scalar curvatures. Notice that C = +/5 and @ = 7. Thus, in case (i) we get o =
and B = —?5, that is, the manifold M = (0, c0) x $3 x §3 with the G,-structure

¢ = tzwAdt+%§t3(2w+—W)

is a Ricci flat coclosed G, manifold.
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In case (ii), we have that a slight modification of the sine-cone provides an Einstein
coclosed G manifold. More concretely, the G;-structure

5
¢ =sin’twAdt+ \/?_sin3t<2003tw+ —+/5 —4cos2t1,h_)

on the manifold M = (0, w) x $3 x 83 is coclosed and its induced metric is Einstein
with positive scalar curvature.

Finally, since C = +/5 > 2 we can apply (iii) with 6 () = w —arccos(—2 cosh ¢/ V5,
to get that the Gp-structure

3
@ =sinh?tw A df + ‘/?— sinh® t(Zcosht vy — /5 — 4cosh2mp_>

on the manifold M = (O, In #) x 83 x 83 is coclosed and its induced metric is
Einstein with negative scalar curvature.

4.3. Warped products of Einstein coupled manifolds. In this section we consider warped
products of 6-manifolds endowed with a coupled SU(3)-structure. Coupled SU(3)-
structures were first introduced in [40] (see also [22] for their role in physics), and
they are characterized by the condition

dw = c Yy, (17)

where ¢ € R — {0} is a nonzero constant. Equivalently, coupled SU(3)-structures have
torsion class W @ W, , i.e. they are SU(3)-structures for which all the torsion forms
different from o( and o, vanish. Notice that the torsion function o is a constant such
that og = —%. Coupled SU(3)-structures are half-flat and they generalize the nearly
Kihler structures (o5 = 0). The next result follows from Theorem 3.4.

Proposition 4.13. Let (M = Iy x L, ¢) be a warped G, manifold of a coupled SU(3)
manifold (L, w, ¥, ¥—). The torsion forms are

4 / i
T0 = _ﬁ(3'300 — fap'+ fBd’),
T = %(Ol00+2f/)dt,
n=—faoy,
3 3

ry = — 2 (@Boo+2/B) vs— 2 f* (o0 —2fa’) v

_%f(ﬁoo+2fa,3’—2fﬁa’)w/\dt—fﬁoz/\dt,

where ooy = —%c.

Next we will consider coupled SU(3)-structures with o # 0 (i.e. which are not
nearly-Kéhler, since the latter case has been studied in Sect. 4.1) which are Einstein
with positive scalar curvature. In the following result we restrict our attention to those
warped Go-structures for which « and § are constant.
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Theorem 4.14. Let (L, w, Y4, ¥_) be a (non nearly-Kdhler) Einstein coupled SU(3)
manifold with Scal(gy,y,) = 30. Then, the coupled constant c satisfies |c| > 3, and we
have:

1) If (o, B) = (1, 0), then the Gy-structure
9= frondt+ iy,

on the manifold M = Iy x L is locally conformal closed (i.e. of type Xp ® X4)
and its induced metric is Ricci flat for f(t) = t, Einstein with Scal(g,) = 42 for
S () = sin ¢, and Einstein with Scal(g,) = —42 for f(t) = sinh 1.

(i) If (o, B) = (0, 1), then the Gy-structure

0= fPond — 3y

on the manifold M = Iy x L is integrable (i.e. of type X1 @ X3 & Xy) and
its induced metric is Ricci flat for f(t) = t, Einstein with Scal(g,) = 42 for
f () = sin ¢, and Einstein with Scal(g,) = —42 for f(t) = sinh 1.

(iii) If (a, B) = (C Vel - 2), then the Gy-structure

(p—ta)/\dt+—<31//+ Ve w)

on the manifold M = (0, 0c0) x L is of type X1 & Xp & X3 with Ricci flat induced
metric.

Proof. Since o0y, 02 do not vanish, from the expression (2) for the scalar curvature we
get

30— Seal(gyu) = Doz - Lgp_15(_2 2 IR (U
= oca = —0y — < |0 = —|—=cC — — |0’ < —°¢C
o) =5 % THl2h =5 2! =3

Therefore, the coupled constant ¢ in (17) satisfies 2 >0.
Let  and S be constant functions satisfying o> + 82 = 1. Then, by Proposition 4.13
the torsion forms of the warped Gy-structure reduce to

0=7f,3 T1=§(3f —ac)dt, Tv=—fao,

3= _?fzaﬁc1p++§f2,82c1ﬁ_+%fﬁca)/\dt— fB oy Adt,

where 8 = ++v/1 — a2 and 0 < |a| < 1.

In the case (i), since « = 1 and § = 0 we get

70=0, 1 =—f(3f —co)dt, ©vm=-—foy, 1w =0.

Hence the torsion forms 7y and 73 vanish, i.e. the G> manifold is locally conformal
closed. Applying Table 3 to the function f(#) = ¢ we have that the induced metric is
Ricci flat, and for the function f(¢#) = sin ¢ (resp. f(¢#) = sinh t) the metric induced by
the Ga-structure is Einstein with Scal(gy) = 42 (resp. Scal(g,) = —42).



658 V. Manero, L. Ugarte

In the case (ii), since « = 0 and 8 = 1 we have

8 f/d: 0 1le//+4f Adt — foy Adt
w=—c¢, TI=>dt, »m=0, B3==fCcYy_+—fcw — fo .
0 77 1 7 2 375 X 2
Since 7o = 0, the G, manifold is of type X1 & X3 @ A4. From Table 3, for the function
f(t) = sin ¢, resp. f(¢t) = sinh ¢, the metric induced by the G;-structure is Einstein
with Scal(gy) = 42, resp. Scal(gy) = —42. For f(t) = t the resulting metric is Ricci
flat.
In the case (iii), we take « = 3/c. Since |c¢| > 3 one has that |«| < 1 and we can

2 .
take B such that 82 = 1 — o2 = 06—59. The torsion forms are

8 1 3
= V=9 m=_(f -Ddt. m=—"fo,
f f c

13=—3 ¢ - f vy + f {1/ +—\/ —9fwAndt — - faz/\dt.

The only possibility for a torsion form to be zero is to consider the function f(z) = ¢
to get 1 = 0 (the other torsion forms are clearly non-zero). Therefore, we obtain a G,
manifold of type X} & X> & A3 with Ricci flat induced metric. O

In order to exemplify this construction we describe first an example of Einstein
coupled SU(3)-structure arising from a twistor space.

Example 4.15. Itis well-known that the set of positive, orthogonal almost complex struc-
tures on a four-dimensional oriented Riemannian manifold forms a smooth manifold Z.
The 6-dimensional manifold Z, which is known as the twistor space, admits a (non-
integrable) almost complex structure J [17]. If in addition the four-manifold is self-dual
Einstein with a suitable positive value of the scalar curvature, then (Z, J) admits an
Einstein coupled SU(3)-structure [43]. Recall that in such case the four-manifold is
isometric to the sphere or CP? with their canonical metrics (see [5]).

We follow the lines of [22] for the description of this coupled structure. There is a
local frame {el, A e(’} for the 1-forms on Z such that the coupled SU(3)-structure
(w, ¥4+, ¥_) expresses locally as

8
w=§(612+€34+€56), Ve =ReW, Y =TmV,

where
W= (8/5)2i (' +ie}) A (S +ie*) A (&5 +ied).

The differential of the forms w and ¥_ are given by

da):—zaolm, dw_zaoa)z—az/\a),
with
/10 8410
00=—(c+2), or= ——( — 1) (e + 3 — 2%,

where 24 o is equal to the scalar curvature of the given four-manifold. The metric induced
by the SU(3)-structure is Einstein precisely for the values o = 1 (in this case the torsion
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form o, vanishes and the structure is nearly-Kihler) and o = 2. For the latter coupled
SU(3)-structure the constant ¢ in (17) is ¢ = —4/10, and

Ric(gw,l//+) =5 8w, Yy

so that we can apply Theorem 4.14.

In the cases (i) and (ii) we get Ga-structures which are locally conformal closed or
integrable (i.e. of types A> @ X4 or X} & A3 & A4) whose induced metrics are Ricci
flat for f(¢) = t, Einstein with Scal(g,) = 42 for f(¢t) = sin ¢, and Einstein with
Scal(gy) = —42 for f(t) = sinh t.

In the case (iii) of Theorem 4.14, since |c| = +/ 10 > 3, we get that the G;-structure
3
t

V10
is of type X @ X> @ A3 with Ricci flat induced metric.

(p:lzwAdt—

G =),

Remark 4.16. Bryant proved in [9] that there are no closed Gj-structures ¢ with
Scal(gy) = 0 unless they are parallel. Indeed, by (6) any such structure satisfies

Scal(gy) = —%|12|2. From Example 4.15 it follows that such a result cannot be ex-
tended to the locally conformal closed class, since there are (non parallel) Einstein
examples with positive scalar curvature, as well as Ricci flat examples. Notice that the
latter case is considered by Fino and Raffero in [22].

In the following result we extend the case (iii) in Theorem 4.14 to more general G-
structures for which the functions & and B are not constant. This produces new Einstein
examples with positive, as well as negative, scalar curvature when we apply the result
to a twistor space over a self dual Einstein 4-manifold.

Theorem 4.17. Let (L, w, V4, ) be a (non nearly-Kéihler) Einstein coupled SU(3)
manifold with Scal (g y,) = 30. Then,

(1) the Ga-structure ¢ on the manifold M = (0, w) x L given by

SCostl//Jr—mw_
( )

is of type X1 @ Xp ® A3 and its induced metric is Einstein with Scal(gy) = 42;
(i1) the Gy-structure ¢ on the manifold M = (O, In lever=9 302_9) X L given by

t
(3 cosht ¥y —v'¢2 —9cosh® ¢ w_>

is of type X1 ® Xp @ X3 and its induced metric is Einstein with Scal(g,) = —42.

i3
) sin” ¢
(p:sm2tw/\dt+

3

(p:sinhzta)/\dt+

Proof. By Proposition 4.13 we get that 7y = 0 if and only if «(¢) = %f’(t).

First we consider f(t) = sint. Since |c¢| > 3 by Theorem 4.14, the function « () =
%cost satisfies |w(#)| < 1 forany r € R.

Let us consider now f(¢#) = sinhz. Since |[c¢|] > 3, the function «a(t) = %cosht

[_ In \c|+~/3c279’ In |c\+x/3c279:|.

satisfies | (7)| < 1 only for the values of ¢ €

Hence, in both cases, the result follows by taking SB(f) such that Bx1t) = 1
2
—a°(t). O
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Let us consider the twistor space Z over a self-dual Einstein 4-manifold with the
Einstein coupled SU(3)-structure given in Example 4.15. Hence, from Theorem 4.14 (iii)
and Theorem 4.17, we obtain G, manifolds in the class X} @ X> @ A3 which are Ricci
flat, or Einstein with Scal(g,) = £42.

Einstein G, manifolds in the class X> @ X3 @& X are given in the following

Theorem 4.18. Let (L, w, Y4, ) be a (non nearly-Kdhler) Einstein coupled SU(3)
manifold with Scal(g,,y,) = 30. Let ¢ denote the coupled constant, and consider 0(t)
as follows:

(i) if0(t) = arcsin ( 2% ) then the Gy -structure ¢ on the manifold M = (0, co) x L

1414

given by
@ =10 Adt +13(cosO(t) Yy — sin O (1) Y_)
belongs to the class Xy ® X3 @ Xy and its induced metric is Ricci flat;
(ii) if 6(t) = arcsin <%

(0, ) x L given by

), then the Go-structure ¢ on the manifold M =

@ =sin’ tw A dt + sin® 1 (cos 0(1) Yy — sin0(t) Y_)

belongs to the class X & X3 & X4 and its induced metric is Einstein with
Scal(gy) = 42;
ey . [ 2(tanh §)%¢ .
(>iii) if 6(¢t) = arcsin Tetanh 1% )’ then the Gy-structure ¢ on the manifold M =
2

(0, 00) x L given by
¢ = sinh? tw A dt + sinh® t(cosO(t) Yy —sinO(t) Y—)

belongs to the class Xy @ X3 ® X4 and its induced metric is Einstein with
Scal(gy) = —42.

Proof. Taking a(t) = cosf(¢) and B(t) = sinf(¢) in Proposition 4.13 we get that
T = 7if(2c sind + f0’). A direct calculation shows that for (i), (ii) and (iii) with
f(t) = t, sint and sinh ¢, respectively, the torsion form 7( vanishes, so the G;-structure
belongs to the class X> @ A3 @ X4 and the induced metric is Einstein. Note that 7, 1o
and 73 never vanish. 0O

4.4. Warped products of Einstein solvmanifolds. Up to now, we have constructed Ein-
stein warped G, manifolds by means of the warping functions f(t) = e’,sinh ¢,z orsinz.
In view of Table 3, it remains to obtain examples with warping function f(¢#) = coshz.
Note that in order to obtain such examples, the fiber manifold is required to be Ein-
stein with negative scalar curvature. For this reason, and since Einstein solvmanifolds
have negative scalar curvature, in this section we consider the warped products of 6-
dimensional solvmanifolds.

An Einstein solvmanifold (S, g) can be described in terms of its Einstein metric
solvable Lie algebra, namely (s, (-, -)5), where s is the Lie algebra of the solvable Lie
group S, and (-, -) is the scalar product on s. In [35] Lauret obtained a structure theorem
for Einstein metric solvable Lie algebras.
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Theorem 4.19 [35]. Any Einstein metric solvable Lie algebra (s, (-, -)s) has to be of
standard type.

Let (n, (-,-)) be a metric nilpotent Lie algebra. A metric solvable extension of
(n, (-, -)) is a metric solvable Lie algebra (s, (-, -)s) such that s has the orthogonal
decomposition s = n @ a with [s, s] = n, [a,a] C nand (-, -)glnxn = (-, -). The metric
solvable Lie algebra (s, (-, -)5) is said to be standard or to have standard type if a is an
Abelian subalgebra of s. In this case, dim a is called the rank.

Taking into account the structure theorem, in [37, Section 3.2] a classification of
Einstein metric 6-dimensional solvable Lie algebras is obtained. There, metric nilpotent
Lie algebras up to dimension five are considered, and their corresponding Einstein metric
solvable extensions are described.

By considering these 6-dimensional Einstein metric solvable Lie algebras, in the
following example we give an Einstein G, manifold obtained as a warped product with
warping function f(¢) = cosh?.

Example 4.20. Let (S, g) be the solvmanifold corresponding to the metric solvable Lie
algebra (s, (-, -)) with s defined by the structure equations

de' = @616,
de* = @e%,
de’ = @636,
de* = @e%’

ded = ¢210612+ N/210634 + ‘/21°e56,

deb® =0,

and (ei, e-/) = §;;. Consider the SU(3)-structure (w, ¥+, ¥—) on § given by

w = 6‘12 + 634 + 656,

Yy = 135 _ o146 _ 236 _ 245

Vo= 6136 +el45 +€235 _ 6246.

It is clear that the induced metric is precisely the given g, i.e. ¢ = g4 v, and it can be
checked that
Ric(gw,1//+) =-5 8w,y -

A direct calculation shows that
dw =0, dyry = A Yy, dy_=m ANY_,

where 71 = —+/10 ¢ is the unique non-zero torsion of the SU(3)-structure.
Thus, the SU(3) manifold (S, w, ¥4, ¥_) is of type Ws and its induced metric is
Einstein with Scal(gw,y,) = —30. We conclude that the G, manifold (R x S, ¢) with

Q= cosh?t w A dt +cosh’ ¢ {1/

is of type X @ A3 ® A4 and its induced metric is Einstein with Scal(gy) = —42. Indeed,
by Corollary 3.5 we have tgp = 0, and 11, 72, 73 # 0, because 71 # 0 = vy.
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5. Classification of Einstein G,-Structures

In this section we apply the results and constructions of Einstein G,-structures on warped
product manifolds given in the previous sections. Motivated by the classification problem
studied by Cabrera et al. [12], we realize most of the G»-classes in the Einstein setting
with scalar curvature of different signs. Moreover, at the end of the section we produce
several explicit families of Einstein G-structures with identical Riemannian metric but
having different G; type (see [1,9,28,34,36] for related results).

In Table 5 we show concrete Einstein examples, when they exist, in the different
Fernandez-Gray classes of G, manifolds. Since the examples are warped products, in
the first column we indicate the fibre. By A/ and C)) we mean a nearly Kihler manifold
and a Calabi Yau manifold, respectively. The fiber §3 x §* is the Einstein SU(3) manifold
described in Example 4.12. By Z we mean the twistor space over a self-dual Einstein
4-manifold with the Einstein coupled SU(3)-structure given in Example 4.15. Finally,
S is the Einstein solvmanifold given in Example 4.20.

The second, third, and fourth columns give information about the class of the SU(3)-
structure on the fiber, the Einstein constant p of its induced metric, and the torsion forms
which are nonzero, respectively.

In Table 5 we also indicate the functions f(¢) that give rise to the Einstein G,
manifolds. The functions «(¢) = cosf(¢) and B(¢) = sin6(¢) defining the appropriate
warped G;-structure in each case are carefully chosen so that the resulting structure
provides a strict example in the G-class. Here we use the term “strict” to indicate that
the Gy-structure does not belong to any subclass of the given one. Next we give details
for each G,-class:

e The class P. Examples are given by the 7-cone of a nearly Kéhler manifold (see
Proposition 4.2 and Corollary 4.5).

e Strict examples in X. Strict examples are given in Proposition 4.3 (see also
Corollaries 4.4 and 4.5) as the sine-cone of a nearly Kéhler manifold.

e The classes X, and A3. From Proposition 4.6 (see also Corollary 4.7) one has that
via the warped construction it is not possible to obtain strict Einstein examples in
these classes.

e Strict examples in X;. Examples are given in Propositions 4.9 and 4.10 as warped
products of Calabi- Yau manifolds or, more generally, of Einstein SU(3) manifolds
in the class Wfr @ W, . For instance, for a nearly Kéhler manifold, taking a(¢) =1
and B(t) = 0 we get Einstein examples in A4\P with constant A = —6 for
f(t) = sinht, and constant A = 6 for f(#) = sint. Also Ricci flat examples in
X4\'P can be obtained with the construction described in Proposition 4.10 (i).

e The class X} & X>. On a connected manifold, one has that X UX, = X A5 (see
[12, Theorem 2.1]), so there do not exist strict Gp-structures in this class. From
Proposition 4.6 we conclude that there do not exist Einstein warped G, manifolds
in the class &>. Thus, the unique Einstein warped G, manifolds in the class X @ A»
are those in X7.

e Strict examples in X @ X3. The Gy-structures given in Example 4.12 starting
from S3 x §3 provide Einstein coclosed examples. Moreover, using Corollary 3.5
one can see that the torsion forms 79, 73 # 0, so they are strict.

e Strict examples in X'} @ X;. A G,-structure belongs to X @ X4\ (X U Ay) if and
only if the torsion forms satisfy 70 = t3 = 0 and 1p, 71 # 0. In order to construct
strict examples in the class X'} @ X4, we consider a nearly-Kéhler manifold L, with
torsion op = —2 and Einstein constant u = 5. Let us take o () = cos6(¢) and
B(t) = sinO(¢), with function 0(¢) chosen as follows:
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®

(ii)

(iii)

if 6(r) = 2 arctan(e€ 1), with C a constant, and f(t) = t, then the corresponding
warped Ga-structure on the manifold (0, oo) x L belongs to X7 @ Xa\ (X1 U Xy)
and its induced metric is Ricci flat;

if 0(r) = 2 arctan(e tanh %), with C a constant, and f(¢) = sinh?, then we get a
warped Ga-structure on (0, co) x L sitting in X7 & X4\ (X] U Xy) whose induced
metric is Einstein with A = —6;

if6(t) = 2 arctan(e€ tan %), with C # Oaconstant,and f(#) = sint, then we geta
warped G;-structure on the manifold (0, ) x L that belongs to X1 @ X4\ (X1 UAXy)
and whose induced metric is Einstein with A = 6.

Notice that if in the case (iii) one considers C = 0, then one recovers the sine-
cone over a nearly-Kéhler manifold, and so the Gj-structure belongs to X7\P.
For characterization results of manifolds in the strict class X; @ Xy, see [14].

The class X> & A3. By Proposition 4.6 we have that via the warped product
construction it is not possible to obtain strict Einstein examples in the class X @ X3.
Strict examples in X> & Xs. We consider the warped Gj-structures in the class
Xy @ Ay given in Example 4.15 starting from the twistor space Z over a self-
dual Einstein 4-manifold. Using Corollary 3.5 one can see that the torsion forms
71, T2 # 0, so they belong to A> & Xs\ (X U Xy).

Strict examples in A3 @ A}. For strict examples in A3 & X4, we consider the
product manifold S3 x §3 endowed with the SU(3)-structure given in Example 4.12.
Recall that the torsion reduces to g = —/5 and v3 # 0. A Gy-structure belongs
to A3 @ X4\ (X3 U Ay) if and only if 79 = 70 = 0 and 71, 73 # 0.

Taking (a, B) = (1, 0), we get that the warped Gs-structure ¢ = f2w Adt+ f3y,
on the manifold M = Iy x $3 x §3 satisfies 9 = v = 0 and its induced metric
is Ricci flat for f () = ¢, Einstein with positive scalar curvature for f(¢) = sin ¢,
and Einstein with negative scalar curvature for f(¢) = sinh .

Clearly, v3 # 0 implies t3 # 0 by Corollary 3.5. Moreover, 71 = 0 if and only
if oo + 2f(r) = —+/5+2f'(t) = 0. Hence, it is clear that 7; # 0 for the
functions f () = sinh ¢, ¢ or sin ¢. In conclusion, one has Einstein examples in
X3 & A\ (X3 U Xy) with Einstein constant A = —6, 0 or 6.

Strict examples in the classes x| & X, & A3 and X & X3 H X4. Several strict
examples in these classes are constructed in Sect. 4.3 on warped products of Ein-
stein coupled SU(3) manifolds (see Theorems 4.14 (ii)—(iii) and 4.17, and also
Example 5.7 below).

The class X & X> & A;. This class is the only one where the existence of a strict
Einstein warped G, manifold remains open. An example could be obtained as
follows. Let L be an Einstein SU(3)-structure in the class W,” @ Wy @ Ws, with
Einstein constant u = 5, and such that the nonzero torsion forms satisfy og = —2
and v = m # 0. The sine-cone of L, i.e. «(t) = cost and f(t) = f(t) = sint,
would satisfy that 3 = 0 and 79, 71, 72 # 0. However, we do not know of any
such L:

Question 5.1. Are there Einstein SU(3)-structures of positive scalar curvature whose
nonzero torsion is given by og = —2 and v; = w1 # 0?

Strict examples in X, & A3 & AX;. Einstein examples in this class are given in
Theorem 4.18 as a warped product of the twistor space Z, and in Example 4.20 as
a warped product of the Einstein solvmanifold S. Since their torsion satisfies that
79 = 0 and 71, 72, 73 # 0, such examples are strict, i.e. they belong to X> @ A3 ®
X\ (X2 @ A3) U (A2 @ Xy U (X3 @ Ay)).
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e Strict examples in the general class X & x> @ A3 & AXy. Examples on warped
products of the twistor space Z are given in Example 5.7 below.

We summarize the previous results in the following theorem. By “admissible” we
mean that formula (6) does not give an obstruction to the existence of an Einstein G-
structure with the desired scalar curvature in the given Gp-class.

Theorem 5.2. For Einstein warped G;-structures, we have:

(i) There are Ricci flat warped Go-structures of every admissible strict type, except
possibly for X1 & X & Xy.
(ii) There are Einstein warped G-structures with positive scalar curvature of every
admissible strict type, except possibly for X1 @& X @ Xj.
(iii) There are Einstein warped Ga-structures with negative scalar curvature of every

admissible strict type, except for X», X3, Xy ® X3, and possibly for X ® x> & Xj.
Motivated by these results, we ask the following general questions:

Question 5.3. Are there Einstein G, manifolds in the strict class X} @& X» @ Xy with
Einstein constant < 0, = 0, or > 0?

Question 5.4. Are there Einstein G, manifolds with negative scalar curvature in the
strict classes Ay, X3 or X» @ X3?

Remark 5.5. In [15, Section 8.4], cohomogeneity-one metrics are used to construct
(Ricci-flat) metrics with holonomy in G and in different admissible G»-classes. Con-
cerning the class X1 @ &> @ X4, one can see that the vanishing of the torsion form 73
implies that the functions defining the metric must be equal, which leads to 7 = 0 and
so the Gy-structure lies in X & Xj.

The results in Sects. 4.2 and 4.3 allow to construct explicit families of G,-structures
in different classes but with the same underlying Einstein metric.

For a fixed Riemannian metric generated by some Gp-structure, it is natural to ask
what are the different G,-structures that induce the same metric. Bryant gave in [9] an
answer to this general question, and recently Lin has investigated in [36] the space of
parallel G,-structures inducing the same Riemannian metric on a compact 7-manifold.
In the following examples we provide some families of G,-structures in distinct classes
but with identical Einstein metric. We will consider deformations of the form

g=q+x, wherey = f(O)(Aa®)yr —BBOY_)

for certain constants A, B. General results on deformations of the form ¢ = ¢ + x,
where x is a 3-form, are obtained in [28] (see also [34]).

Example 5.6. G,-structures with identical Einstein metric on warped products of a nearly
Kéhler manifold. Let us consider L anearly Kidhler manifold andlet f(#) = sin ¢. Follow-
ing the case (iii) above of strict examples in X @ X}, consider ¢ () = 2 arctan(e€ tan %),
where C € R is a constant. The Gj-structures ¢c on M = (0, 7) x L given by

gc = sin® t o Adt +sin’ t(cos Oc (1) Y. — sinOc (1) )

satisfy that gy = dt* +sin’ t g7, i.e. the induced Einstein metric is identical for all the
Gj-structures in the family. The G,-type of ¢¢ varies as follows:

e Xy, ifand only if C = 0;
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o X1 @ Ay, if and only if C # 0.
Therefore, we can deform the structure in X} to one in the class X & Xj.

Example 5.7. Gy-structures with identical Einstein metric on warped products of the
twistor space Z. We define an explicit family of G-structures in different classes but
with the same induced Ricci flat metric starting from L in the conditions of Theorem 4.14

Vc2-9

(iii), in particular for L = Z. Let us denote g = % and Bp = ==, and consider
(a,b) € R? the points in the ellipse of equation a(z) a’+ /3% b*=1.0nM = (0, 00) x L
we take the family of G;-structures

Qap =10 Adt+1 (aaoys —bBoP-).

The induced Ricci flat metric is gy, , = d 12 + t>g;, but the G,-structure belongs to the
strict class

o X ® X, ® A, if and only if (a, b) = (1, 1);

o X> & Ay, if and only if (a, b) = (aa], 0);

o X ® X3 ® Ay, if and only if (a, b) = (0, 85 ");

o X1 & X & X3 @ Xy for any other values of (a, b).

Similar families can be constructed for the other Einstein metrics based on f (1) =
sint and f(¢) = sinh¢. Take (a, b) € R? satisfying a’?+b>=1.0n M = (0,00) x L,
we consider the family of G;-structures

Qap = frfondt+ fPays—by_).

The induced Einstein metric is g, , = dt> + f2gr, and by Theorem 4.14 (i) (ii), the
Gj-structure belongs to the strict class

o X ® Ay, if and only if (a, b) = (1, 0);
o X| ® A3 @ Ay, if and only if (a, b) = (0, 1);
o X @ &> @& X3 ® X4 for any other values of (a, b).

The Einstein constant is positive, resp. negative, for f(t) = sint, resp. f(¢t) = sinhzt.

6. Spin(7)-Structures

In this section we consider Spin(7) manifolds given as a warped product of a G, manifold,
and we obtain an explicit description of the torsion forms of the warped Spin(7)-structure
in terms of the torsion forms of the G,-structure.

A Spin(7)-structure on an 8-dimensional manifold N consists of a reduction of the
structure group of its frame bundle to the Lie group Spin(7). Equivalently, such structure
can be characterized by the existence of a global non-degenerate 4-form ¢ on N which
can be locally written as

65678 61358 _ 61468 _ 62368 _ 82458

b= 2843478 4 +
1234 | 1256 , 3456 , 1367 , 1457 , 2357 _ 2467 (18)
+e +e +e +e +e +e —e
where {e!, ..., 8} is alocal basis of 1-forms on N. The presence of a Spin(7)-structure

¢ on a manifold defines a volume form volg and a Riemannian metric g4 which satisfy

1
(26(X, X)g4 (Y, Y) — gs(X, ¥)?)volg = S Axtrd NG,
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where g4 (U, U) is given explicitly in [34, Corollary 4.3.2].

Given a Spin(7) manifold (N, ¢), the group Spin(7) acts on the space of differential
p-forms QP (N) on N. This action is irreducible on Q' (N) and Q7 (N), but it is reducible
for QP (N) with 2 < p < 6. Since the Hodge star operator g induces an isomorphism
xg QP (N) = Q8~P(N), it suffices to describe the decompositions for p = 2, 3 and 4.
In [8] it is shown that the Spin(7) irreducible decompositions for 2 < p < 4 are

Q(N) = Q2(N) & Q3,(N),
Q(N) = QYN) ® Qig(N),
QHN) = QI (V) @ Q3(V) ® 23,(N) @ Qi5(N),

where Q,f (N) denotes the Spin(7) irreducible space of p-forms of dimension k at every
point. The description on the other degrees is obtained via the isomorphism g €2 ,’; (N) =

Qi_p (N) given by the Hodge star operator, and in this section we are only interested in
the Spin(7)-type decomposition of 5-forms. This space decomposes as

QX(N) = Q3(N) ® Qi5(N),

where
QRN ={arg| aeQ (M),

Qig(N) = {y € Q°(N) | ¢ Ay =0}

The isomorphisms between Spin(7) irreducible spaces introduce a scaling factor on
1-forms k € Q' (N) as follows:

*g (kg(k N @) N p) = —Tk. (19)

The above decomposition of 5-forms on N allows to express the exterior derivative
of ¢ as

dp = A AN+ As, (20)

where 11 € Q'(N) and As € Q3¢(N) are called the forsion forms of the Spin(7)-
structure.

According to [18] the covariant derivative of ¢ can be decomposed into two com-
ponents, namely Y| and Y». Thus, a Spin(7)-structure is said of type P, Vi, Y, or
Y = Y| ® ), if the covariant derivative V8¢ lies in {0}, Y|, Yo or Y = Y| @ Y>,
respectively. In terms of the torsion forms, these classes are characterized in Table 4. In
the parallel case, the holonomy reduces to Spin(7) and the metric is Ricci-flat. Examples
of manifolds with Spin(7) holonomy are constructed in [9,10,33].

Table 4. Classes of Spin(7)-structures

Class Torsion forms Structure

P A =Xr5=0 Parallel

NS A5 =0 Locally conformal parallel
) rx =0 Balanced

y=V1®W No condition General Spin(7)
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Asithappened for SU(3) and G, manifolds, the scalar curvature of a Spin(7) manifold
can be described in terms of the torsion forms. The expression can be achieved from the
formulas described in [31,39] and is given as follows:

21 1 7
Scal(gg) = ng - §|xs|2 5 d", @21)

where d*8 denotes the codifferential, i.e. the adjoint operator of the exterior derivative
with respect to the metric.

Consider a 7-dimensional manifold M endowed with a G,-structure ¢. Let N be the
Riemannian product N = R x M, and denote by p: N — Rand g: N — M the
projections. Then, the 4-form

¢ =q"(p) A p*dt) + q" (¥79),

with ¢ the coordinate on R, defines a Spin(7)-structure on N. In the following, ¢ and
#7¢ will be identified with their pullbacks onto N. More generally, we have

Proposition 6.1. Let (M, @) be a Gy manifold and consider a function f: Iy —> R.
Then, the 4-formon N = Iy x M given by

¢ = O Adi+ fH0)mp (22)
defines a Spin(7)-structure with induced metric
gp = [7(1) gy +dr1,

and volume form voly = f’(t)voly A dt.

Proof. Let {el, el e7} be a local orthonormal basis of 1-forms such that the 3-form
@ writes as in (3). Now, with respect to the local basis on N given by {h', ... h8} =
{f(e', ..., f(t)e,dt}, the 4-form ¢ can be written as in (18). Therefore, {h', ..., h%}
is orthonormal for the metric gy, and

8 7
gp= h@h =f2 1)) @ +dt@dt = f*(1) g, +dt*.
i=1 i=1

O

By the preceding proposition, the Spin(7) manifold N = Iy x M with ¢ described
in (22) corresponds, as a Riemannian manifold, to the warped product N = Iy x s M.
We will refer to such a Spin(7)-structure as a warped Spin(7)-structure, and the manifold
(N =1y x M, ¢) will be called warped Spin(7) manifold.

Lemma 6.2. Let B € Q9(M) be a differential q-form on M, and let 7 and g be the
Hodge star operators induced by the structures ¢ and ¢, respectively. Then,

sgB=fT 2w pAdt, k(B Adl) = (—1)1 [T p.

Proof. 1t is a consequence of the fact that the Hodge star operator *g is determined by
(g4, volg), where volg = f7vol7 A dt and voly = %(p A*7¢. 0O
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Theorem 6.3. Let (M, ¢) be a Gy manifold with torsion forms 1y, t1, T2, 13. Then, the
torsion forms A1, As of a warped Spin(7) manifold (N = Iy x M, ¢) are given by

A = 1( +4f/)dt+24
= — (T _-[’
1 7 0 7 1

__E 3 i 4 4 3
As = 7f rl/\go/\dt+7f TIAXQ+ [T o A+ [~ %713 Adt.

Proof. From (19) and (20), and since A5 € Qig(N ), it follows that the torsion form X
is given by

1
Al = 7 % ((xsd @) A @).
In order to compute xgd¢, we first take into account (5) and (22) to get
dp = fPro+4f) xro Adt +3f3 T Ao Adt+ [ %713 Adt
+4f4rl /\*7(p+f4r2/\g0.
A direct calculation using Lemma 6.2 shows that
xgdp = — [P (10 +4f) 9 =37 %711 A @) — T3+ 4 57 (11 A7) Adt
+f *x7(12 A @) Adt.
Now, by (4) we arrive at
(ksdd) A = —fO(t0 +4 ) ¢ A 70
—3f557(ri A@) A Adt —3fC 57 (T A @) A7
+4f5 *7(T1 A *70) A *x7¢0 A dt
= —fS(ro+4f) @ Ax10+24 £ 5711 Adt.

Then, using again Lemma 6.2, we get
7
xg((+gdp) A P) = —?(to +4f)dt — 241,
concluding that
A 1( +4f/)dt+24
= —(x =1
1 f 0 7 1

Finally, for the torsion form A5 we use that A5 = d¢ — A1 A ¢, together with the
expressions of d¢ and Ay given above. O

A direct consequence of the previous theorem is the following

Corollary 6.4. The torsion forms of a warped Spin(7)-structure satisfy:

1 +4f =0,
=0 e |0 TrY

ii) 7y =0.

iii) 71 = 0,

A =0 < Jiv) =0,
v) 13 =0.
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7. Einstein Warped Spin(7) Manifolds

Our aim in this section is to construct Einstein 8-manifolds in the different Spin(7)-
classes by means of warped products of certain Einstein G, manifolds, i.e. by means of
warped Spin(7)-structures. As in Sect. 4, in order to use directly Table 3, in this section
we will also consider the Einstein metrics to be “normalized”.

We begin with a characterization of the warped Spin(7) manifolds that are parallel,
which is related to a well known result in [3].

Proposition 7.1. There exists a parallel warped Spin(7)-structure on N = Iy x M if
and only if the fiber (M, @) belongs to X}, i.e. it is a nearly parallel G, manifold, with
torsion 1) = —4.

Furthermore, in that case N = (0, 00) x M is the cone with Spin(7)-structure

= ndt+1* %7 ¢.

Proof. The parallel condition on the Spin(7)-structure is equivalent to A; = A5 = 0.
From Corollary 6.4, and taking into account the possible functions in Table 3, these
equations are equivalent to

nn=n=13=0, 0= —4 and f@) =t,
and the result follows. O

The following three propositions give characterizations of the warped Spin(7) mani-
folds that are Einstein and locally conformal parallel, depending on the sign of its scalar
curvature.

Proposition 7.2. There exists an Einstein locally conformal parallel warped Spin(7)-
structure g on N = Iy x M with Scal(gy) = 56 if and only if the fiber (M, @) belongs
to X| with torsion 1y = +4.

Furthermore, in that case N = (0, w) X M is the sine-cone with Spin(7)-structure

¢:sin3tgoAdt+sin4t *7 Q.

Proof. Suppose there exists such a warped product (N = Iy x M, ¢). Since A5 = 0,
Corollary 6.4 forces the Gy-structure ¢ to be in the class &. Since Scal(gy) = 56,
by Table 3 we get that the warping function is necessarily given by f(t) = sint and
Scal(gy) = 42. Now, by (6), the torsion of the G;-structure is 79 = 4.

Conversely, if we consider a nearly parallel G, manifold with torsion ty = =£4, then
the warped Spin(7)-structure with f(¢#) = sin¢ is Einstein (with constant 7) and locally
conformal parallel by Corollary 6.4. O

Proposition 7.3. There exists a Ricci flat (strict) locally conformal parallel warped
Spin(7)-structure ¢ on N = Iy x M if and only if the fiber (M, @) belongs to X with
torsion 1y = 4.

Furthermore, in that case N = (0, 00) x M is the cone with Spin(7)-structure

¢ =1>p Andt+1* %7 9.

Proof. The proof is similar to that of Proposition 7.2, but taking into account that the
Ricci flatness forces the warping function to be f(#) = ¢. Hence, the locally conformal
parallel Spin(7)-structure is strict only when 7o = 4. O
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Proposition 7.4. There exists an Einstein locally conformal parallel warped Spin(7)-
structure ¢ on N = Iy x M with Scal(gy) = —56 if and only if the Ga-structure ¢ on
the fiber M is one of the following:

e Parallel, and then N = R x M is the exponential-cone with the Spin(7)-structure
¢ = o Adi+e* x7¢;

e Nearly parallel with torsion Tg = +4, and then N = (0, 00) x M is the hyperbolic
sine-cone with the Spin(7)-structure

¢ = sinh3t<p A dt +sinh* ¢ *700.

Proof. The proof is similar to the preceding propositions, but since Scal(gg) = —56, by
Table 3 we have that either 7o = 0 and f(r) = €', or Scal(g,) = 42 and f(r) = sinhzt.
In the first case the fiber is parallel, and in the second case it is a nearly parallel G,
manifold with torsion g = £4. O

As a consequence one gets Einstein locally conformal parallel Spin(7) manifolds
with negative, zero or positive constant (see Corollary 4.4 for G manifolds satisfying
the hypothesis of the following corollary) (Table 5).

Corollary 7.5. Let (M, ¢) be a nearly parallel Gy manifold with torsion ty = 4. Then,
there are warped Spin(7)-structures with fiber (M, @) which are (strict) locally confor-
mal parallel and Einstein with constant —7, 0 or 7, by taking the function f(t) = sinht,
t or sint, respectively.

In the following result we note that there are no Einstein (strict) balanced warped
Spin(7) manifolds.

Proposition 7.6. A warped Spin(7) manifold is balanced and Einstein if and only if it
is a parallel Spin(7) manifold.

Proof. Given an Einstein balanced warped Spin(7) manifold, since »; = 0, from Corol-
lary 6.4 we get that the torsion forms of the G;-structure on the fiber satisfy

71 =0, 0 =—4

and the warping function in Table 3 is f(t) = t. Thus, the Spin(7)-structure is necessarily
Ricci flat and by (21) we get A5 = 0. In conclusion, the warped Spin(7)-structure is
parallel. O

Asin Sect. 5, we summarize in Table 6 the results obtained above for Einstein warped
Spin(7) manifold in the different strict classes:

e The class P. Examples are given by the z-cone of a nearly parallel G, manifold
(see Proposition 7.1).

e The class ). Strict examples with Einstein constant —7, O or 7 are given in
Corollary 7.5 as the hyperbolic sine-cone, cone or sine-cone, respectively, of a
nearly parallel G, manifold with torsion 7y = 4.

e The class )». By Proposition 7.6 it is not possible to obtain strict Einstein examples
via the warped construction.

e The general class )| @ )». Strict examples with positive, null and negative scalar
curvature can be achieved as the different cones of Einstein locally conformal
parallel G, manifolds (see Sect. 5 for examples of such G, manifolds).
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Table 6. Einstein warped Spin(7)-structures

Fiber Gy-class n Gy non- f(t)-cone metric Strict Einstein Spin(7)
vanishing Spin(7)- constant non-
torsion class A vanishing
forms torsion

forms

NP X 6 0= —4 t P 0 -

NP X 6 70 sinht, ¢, sint Vi -7, 0,7 A

P {0} 0 - et %I -7 r

%)

LCP Xy 6 ] sinht, t, sint Vioe -7, 0,7 A, As

LCP Xy 0 71 e Vi@ =7 A, As

LCP Xy —6 71 cosh 7 VI -7 A, As

We summarize the previous results in the following
Theorem 7.7. For Einstein warped Spin(7)-structures, we have:

(1) There are Ricci flat warped Spin(7)-structures of every admissible strict type.
(ii) There are Einstein warped Spin(7)-structures with positive scalar curvature of
every admissible strict type.
(iii) There are Einstein warped Spin(7)-structures with negative scalar curvature of
every admissible strict type, except for ).

Motivated by this result, we ask the following question:

Question 7.8. Are there Einstein (non parallel) balanced Spin(7) manifolds?
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